2 research outputs found

    Development of a non-contact blood rheometer using acoustic levitation and laser scattering techniques

    Full text link
    Coagulopathy, a condition in which blood coagulation is impaired, can be inherited or result from a variety of conditions including severe trauma, illness or surgery. Perioperative monitoring of a patient’s coagulation status is important to identify coagulopathic patients. Thromboelastography or TEG remains the gold standard for whole blood coagulation monitoring. However, TEG suffers from certain well-documented drawbacks such as contact containment and manipulation of the blood sample, large and uncontrolled strain, and the inability to distinguish the contribution of elasticity and viscosity during blood coagulation. We developed a non-contact blood rheometer which uses a single drop of blood to measure its viscoelastic properties. Small sample size (typically 5-15 μL), low shear strain (linear viscoelasticity), and non-contact manipulation and containment of samples make this technique unique for real-time monitoring of blood coagulation. In the first part of this work, we addressed the development of the technique, benchmarking the results against known material properties standards. We observed large amplitude oscillations of the levitated drop results in multiple resonance modes and excessive dissipation. We suggested upper bound limits for drop oscillation amplitudes required to satisfy the Lamb theoretical expressions for drop frequency and damping. In the second part, we applied our technique to study sickle-cell disease. Our technique showed that the shape oscillation of blood drops was able to assess an abnormally increased viscosity in sickle cell patients when compared with normal controls over a range of hematocrit. Furthermore, the technique was sensitive enough to detect viscosity changes induced by hydroxyurea treatment. The third part of this work focused on blood coagulation monitoring. The technique showed sensitivity to coagulation parameters, such as platelet count, calcium ion concentration, and hematocrit. A comparison of the results with TEG showed coagulation started sooner in the levitation technique, but with a lower rate and lower maximum stiffness. Thus, the technique developed can be used as a monitoring tool to assess blood mechanical properties sensitively enough to be of use in clinical diagnostic settings.2020-06-04T00:00:00
    corecore